Funções do 1° e 2° grau
Função do 1° grau
Toda função pode ser representada graficamente, e a função do 1º grau é formada por uma reta. Essa reta pode ser crescente ou decrescente, dependendo do sinal de a.
Quando a > 0
Isso significa que a será positivo. Por exemplo, dada a função: f(x) = 2x – 1 ou
y = 2x - 1, onde a = 2 e b = -1. Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.
x y - 2 - 5
- 1 - 3 0 - 1
1 / 2 0
1 1
Podemos observar que conforme o valor de x aumenta o valor de y também aumenta, então dizemos que quando a > 0 a função é crescente.
Com os valores de x e y formamos as coordenadas, que são pares ordenados que colocamos no plano cartesiano para formar a reta. Veja:
No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.
Quando a < 0
Isso indica que a será negativo. Por exemplo, dada a função f(x) = - x + 1 ou
y = - x + 1, onde a = -1 e b = 1. Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.
x y -2 3
-1 2 0 1
1 0
Podemos observar que conforme o valor de x aumenta o valor de y diminui, então dizemos que quando a < 0 a função é decrescente.
Com os valores de x e y formamos as coordenadas que são pares ordenados que colocamos no plano cartesiano para formar a reta. Veja:
No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.
Características de um gráfico de uma função do 1º grau.
• Com a > 0 o gráfico será crescente.
• Com a < 0 o gráfico será decrescente.
• O ângulo α formado com a reta e com o eixo x será agudo (menor que 90°) quando a > 0.
• O ângulo α formado com reta e com o eixo x será obtuso (maior que 90º) quando a < 0.
• Na construção de um gráfico de uma função do 1º grau basta indicar apenas dois valores pra x, pois o gráfico é uma reta e uma reta é formada por, no mínimo, 2 pontos.
• Apenas um ponto corta o eixo x, e esse ponto é a raiz da função.
• Apenas um ponto corta o eixo y, esse ponto é o valor de b.
Raiz de uma função do 1°grau
As funções do tipo y = ax + b ou f(x) = ax + b, onde a e b assumem valores reais e a ≠ 0 são consideradas funções do 1º grau. Esse modelo de função possui como representação geométrica a figura de uma reta, sendo a posição dessa reta dependente do valor do coeficiente a. Observe:
Função crescente: a > 0.
Função crescente: a > 0.
Função decrescente: a < 0.
Raiz da função
Calcular o valor da raiz da função é determinar o valor em que a reta cruza o eixo x, para isso consideremos o valor de y igual a zero, pois no momento em que a reta intersecta o eixo x, y = 0. Observe a representação gráfica a seguir:
Calcular o valor da raiz da função é determinar o valor em que a reta cruza o eixo x, para isso consideremos o valor de y igual a zero, pois no momento em que a reta intersecta o eixo x, y = 0. Observe a representação gráfica a seguir:
Podemos estabelecer uma formação geral para o cálculo da raiz de uma função do 1º grau, basta criar uma generalização com base na própria lei de formação da função, considerando y = 0 e isolando o valor de x (raiz da função). Veja:
y = ax + b
y = 0
ax + b = 0
ax = –b
x = –b/a
Portanto, para calcularmos a raiz de uma função do 1º grau, basta utilizar a expressão x = x = –b/a.
y = ax + b
y = 0
ax + b = 0
ax = –b
x = –b/a
Portanto, para calcularmos a raiz de uma função do 1º grau, basta utilizar a expressão x = x = –b/a.
Exemplo 1:
Calcule a raiz da função y = 2x – 9, esse é o momento em que a reta da função intersecta o eixo x.
Resolução:
x = –b
a
x = –(–9)
x = –(–9)
2
x = 9
x = 9
2
x = 4,5
Exemplo 2:
Dada a função f(x) = –6x + 12, determine a raiz dessa função.
Resolução
x = –b
x = 4,5
Exemplo 2:
Dada a função f(x) = –6x + 12, determine a raiz dessa função.
Resolução
x = –b
a
x = –12
x = –12
–6
x = 2
x = 2
Coeficiente linear de uma função do 1° grau
As funções do tipo f(x) = y = ax + b, com a e b números reais e a ≠ 0, são consideradas do 1º grau. Ao serem representadas no plano cartesiano, constituem uma reta crescente ou decrescente. E no caso de a = 0, a função é chamada de constante.
Uma função possui pontos considerados essenciais para a composição correta de seu gráfico, e um desses pontos é dado pelo coeficiente linear da reta representado na função pela letra b, que indica por qual ponto numérico a reta intercepta o eixo das ordenadas (y).
Nas funções a seguir, observe o valor numérico do coeficiente linear e o gráfico representativo da função:
y = x + 1
b = 1
b = 1
y = –x – 1
b = –1
Função do 2° grau
Uma função do 2º grau é definida pela seguinte lei de formação f(x) = ax² + bx + c ou y = ax² + bx + c, onde a, b e c são números reais e a ≠ 0. Sua representação no plano cartesiano é uma parábola que, de acordo com o valor do coeficiente a, possui concavidade voltada para cima ou para baixo. A função do 2º grau assume três possibilidades de resultados ou raízes, que são determinadas quando fazemos f(x) ou y igual a zero, transformando a função numa equação do 2º grau, que pode vir a ser resolvida por Bháskara.
Gráfico da função
Coeficiente a > 0, parábola com a concavidade voltada para cima
Gráfico da função
Coeficiente a > 0, parábola com a concavidade voltada para cima
Coeficiente a < 0, parábola com a concavidade voltada para baixo
? > 0 – A equação do 2º grau possui duas soluções distintas, isto é, a função do 2º grau terá duas raízes reais e distintas. A parábola intersecta o eixo das abscissas (x) em dois pontos.
? > 0 – A equação do 2º grau possui duas soluções distintas, isto é, a função do 2º grau terá duas raízes reais e distintas. A parábola intersecta o eixo das abscissas (x) em dois pontos.
? = 0 – A equação do 2º grau possui uma única solução, isto é, a função do 2º grau terá apenas uma raiz real. A parábola irá intersectar o eixo das abscissas (x) em apenas um ponto.
? < 0 – A equação do 2º grau não possui soluções reais, portanto, a função do 2º grau não intersectará o eixo das abscissas (x).
Pontos notáveis do gráfico de uma função do 2º grau
O vértice da parábola constitui um ponto importante do gráfico, pois indica o ponto de valor máximo e o ponto de valor mínimo. De acordo com o valor do coeficiente a, os pontos serão definidos, observe:
Quando o valor do coeficiente a for menor que zero, a parábola possuirá valor máximo.
Quando o valor do coeficiente a for maior que zero, a parábola possuirá valor mínimo.
Outra relação importante na função do 2º grau é o ponto onde a parábola corta o eixo y. Verifica-se que o valor do coeficiente c na lei de formação da função corresponde ao valor do eixo y onde a parábola o intersecta.
Raizes da função do 2° grau
Número de raízes reais da função do 2º grau
Dada a função f(x) = ax² + bx + c, existirão três casos a serem considerados para a obtenção do número de raízes. Isso dependerá do valor do discriminante Δ.
1º caso → Δ > 0: A função possui duas raízes reais e distintas, isto é, diferentes.
2º caso → Δ = 0: A função possui raízes reais e iguais. Nesse caso, dizemos que a função possui uma única raiz.
3º caso → Δ < 0: A função não possui raízes reais.
Soma e produto das raízes
Seja a equação, ax² + bx + c = 0, temos que:
Se Δ ≥ 0, a soma das raízes dessa equação é dada por e o produto das raízes por . De fato, x’ e x’’ são as raízes da equação, por isso temos:
Soma das raízes
Produto das raízes
Efetuando a multiplicação, temos:
Substituindo Δ por b² – 4ac, temos:
Após a simplificação, temos:
Propriedades da função do 2° grau
As funções do 2º grau possuem diversas aplicações no cotidiano, principalmente em situações relacionadas à Física envolvendo movimento uniformemente variado, lançamento oblíquo, etc.; na Biologia, estudando o processo de fotossíntese das plantas; na Administração e Contabilidade relacionando as funções custo, receita e lucro; e na Engenharia Civil presente nas diversas construções.
A representação geométrica de uma função do 2º grau é dada por uma parábola, que de acordo com o sinal do coeficiente a pode ter concavidade voltada para cima ou para baixo.
A representação geométrica de uma função do 2º grau é dada por uma parábola, que de acordo com o sinal do coeficiente a pode ter concavidade voltada para cima ou para baixo.
As raízes de uma função do 2º grau são os pontos onde a parábola intercepta o eixo x. Dada a função f(x) = ax² + bx + c, se f(x) = 0, obtemos uma equação do 2º grau, ax² + bx + c = 0, dependendo do valor do discriminante ? (delta), podemos ter as seguintes situações gráficas:
? > 0 , a equação possui duas raízes reais e diferentes. A parábola intercepta o eixo x em dois pontos distintos.
? > 0 , a equação possui duas raízes reais e diferentes. A parábola intercepta o eixo x em dois pontos distintos.
? = 0, a equação possui apenas uma raiz real. A parábola intercepta o eixo x em um único ponto.
? < 0, a equação não possui raízes reais. A parábola não intercepta o eixo x.
Nenhum comentário:
Postar um comentário